NY

中华人民共和国农业行业标准

NY/T XXX-XXX

奶牛乳热诊断及防治技术规范

Technique specifications for diagnosis, treatment and prevention of milk fever in dairy cows

前言

本文件按照GB/T 1.1-2020《标准化工作导则 第1部分:标准化文件的结构和起草规则》的规定起草。

本文件由农业农村部畜牧兽医局提出。

本文件由全国动物卫生标准化技术委员会(SAC/TC 181)归口。

本文件起草单位:中国农业大学、黑龙江八一农垦大学、中国动物疫病预防控制中心、全国畜牧总站、中国动物卫生与流行病学中心、现代牧业(集团)有限公司、北京首农畜牧发展有限公司、伊利集团液态奶事业部光明牧业有限公司、内蒙古圣牧高科牧业有限公司、西安草滩农场有限公司、黑龙江省奶业协会、中国农业科学院北京畜牧兽医研究所、西北农林科技大学、瑞普生物有限公司、北京生泰尔科技股份有限公司、河北省畜牧兽医研究所、东北农业大学、新疆农业大学、深圳市博卡生物技术有限公司、黑龙江省农垦科学院畜牧兽医研究所、扬州大学、哈罗德北京科技有限公司、华中农业大学、南京农业大学、宁夏大学、中国农科院兰州畜牧与兽药研究所、河北省农林科学院粮油作物研究所、甘肃农业大学、南京晶捷生物科技有限公司、山东省农业科学院畜牧兽医研究所。

本文件主要起草人:徐闯、陈媛媛、宋晓晖、李心慰、李建喜、刘立成、樊晓旭、郭刚、苏衍菁、王秀敏、马翀、曹杰、高健、常广军、张俊杰、沈向真、王建国、王亚洲、杨宏军、赵学明、刘爱玲、孙旭东、万春江、李茉莉、曹一鸣、曹棋棋、白云龙、夏成、张弘弢、郭志刚、杨威、程佳鑫、王子璇、王俊淇、邹思琪、王海妍、张海峰、白雅芳、刘嫣然、何团拥、秦玉、周进俊、王亨、张瑞华、曹永生、茹彩霞、白东东、周玉虎、刘慧环、丁一、马云、郭延生、张康、王磊、王昆、彭朋、张博、吐尔逊阿依·麦麦提依明、张勇、张全伟、吴晓亮、路晓杰、常仁旭、沈泰钰、邓昭举、李铭、赵壁忱。

引言

奶牛乳热又称低钙血症,是一种严重的奶牛代谢性疾病,给奶牛的健康和生产性能造成很大危害。其主要特征是血清钙浓度急剧下降,临床表现多样,从轻微的食欲不振到严重的无法站立及意识丧失。由于其复杂的发病机制和多样的临床症状,乳热防控一直是奶牛养殖领域关注的重点与难点。近年来,随着我国奶牛养殖集约化、规模化程度不断增加以及奶牛单产的持续提升,乳热的发病率逐年上升,给奶牛养殖业带来了巨大的经济损失。针对该病,目前国内尚未建立统一的奶牛场乳热诊疗的行业标准,国际也没有通用的防控技术标准。

本文件规定了乳热的临床症状、血液指标、尿液 pH、影响乳热早期监测的饲料中常量元素指标和阈值、以及诊疗技术、风险因素和防控方法,适用于我国集约化养殖场的奶牛乳热诊疗和防控。

奶牛乳热诊断及防治技术规范

1 范围

本文件规定了奶牛乳热诊断、治疗、群体风险监测与预防措施。本文件适用于奶牛场奶牛乳热的防控。

2 规范性引用文件

下列文件中的内容通过文中的规范性引用而构成本文件必不可少的条款,其中,注日期的引用文件,仅该日期对应的版本适用于本文件;不注日期的引用文件,其最新版本(包括所有的修改单)适用本文件。

GB/T 13885 动物饲料中钙、铜、铁、镁、锰、钾、钠和锌含量的测定 原子吸收光谱法

GB/T 14699 饲料采样

GB/T 18823 饲料检测结果判定的允许误差

GB/T 6437 饲料中钙、总磷的测定 分光光度法

GB 19489 实验室 生物安全通用要求

NY/T 14 高产奶牛饲养管理规范

NY/T 2662 标准化养殖场 奶牛

NY/T 3049 奶牛全混合日粮生产技术规程

NY/T 3191 奶牛酮病诊断及群体风险监测技术

NY/T 541《兽医诊断样品采集、保存与运输技术规范》

3 术语和定义

下列术语和定义适用于本文件。

3. 1

乳热 milk fever

乳热又称低血钙症、产后瘫痪,是指奶牛全血/血清总钙浓度低于2.10 mmol/L或离子钙浓度低于1.05 mmol/L,临床表现为精神异常、采食量下降、体温降低、肌肉松弛、卧地不起、循环衰竭、昏迷等。

3. 2

临床型乳热 clinical milk fever

是指奶牛全血/血清总钙浓度低于1.40 mmol/L或离子钙浓度低于0.80 mmol/L,临床表现为精神沉郁、肌肉震颤或站立困难等典型临床症状。

3.3

亚临床型乳热 subclinical milk fever

是指奶牛全血/血清总钙浓度在 $1.40~\text{mmol/L}\sim2.10~\text{mmol/L}$ 之间或离子钙浓度 $0.80~\text{mmol/L}\sim1.05~\text{mmol/L}$ 之间,无明显临床症状。

3.4

围产期 transition period

是指妊娠奶牛分娩前 21 d 至分娩后 21 d 的时期。

4 缩略语

BCS (body condition score): 体况评分。

DM (dry matter): 干物质。

TMR (total mixed rations): 全混合日粮。

5 安全措施

- 5.1 进入奶牛养殖场生产区的人员须穿戴防护装备,包括防护服、场内专用靴、护目镜、口罩、一次性手套等。
- 5.2 离开牛舍时, 需用洗手液洗手, 必要时使用皮肤黏膜消毒剂对手部进行彻底消毒。

5.3 实验室检测时,样本(如血样、尿液等)处理应按照 GB 19489 执行,废弃物处理应按照 NY/T 2662 执行。

6 主要仪器和耗材

- a pH 检测仪或 pH 试纸。
- b 全自动生化分析仪。
- c 牛现场快速检测仪。
- d 离子钙/镁微流控检测芯片。
- e 离子钙/镁干化学检测芯片。
- f低温高速离心机。
- g冰箱。
- h 恒温培养箱。
- i 针头(可选用 16 号或 18 号针头)。
- g输液器。
- k 酒精棉球或碘伏。
- 1一次性手套。
- m 废弃物容器。

7 临床诊断

- 7.1 临床型乳热
- 7.1.1 第一阶段(轻度症状)
- a 持续时间一般为1h~6h。
- b 采食量下降(较正常减少30%以上)。
- c 耳部温度低于 35℃ (正常 37℃~38℃)。
- d 尚能走动, 行走时步幅缩短(<80 cm/步, 正常 100 cm~120 cm)。
- e 侧腹肌肉颤动(>5 次/min)。
- f 频繁甩头(>10次/min)。

7.1.2 第二阶段(中度症状)

- a 持续时间一般为12h。
- b 病牛不能站立,但可保持卧地姿势。
- c 反应迟钝、厌食、鼻镜干燥、体温低和耳部冰凉, 肌肉震颤加剧。
- d 头颈弯曲至胸侧,躯干呈"S"型。
- e 心率超过 100 次/min。

7.1.3 第三阶段(重度症状)

- a 病牛不能保持卧地姿势。
- b 对刺激无反应。
- c 心率可达 120 次/min, 外周脉搏微弱。
- d 瞳孔散大、角膜反射消失。
- e 逐步失去意识直至昏迷,如不进行及时治疗,病牛可在几小时内死亡。

7.2 亚临床型乳热

无明显临床症状。

8 实验室检测

8.1 样品采集、保存与运输

8.1.1 血样采集方法

从尾静脉无菌采集奶牛的血液,每头约 10 mL。血清析出后,分离血清。牛现场快速检测产品采用全血。

8.1.2 样品保存与运输

8.1.2.1 密封

样品采集后,应立即使用次容器(如密封盒或密封袋)进行二次包装,以防渗漏。密封 好的样品放入外包装保温箱中,并加入预冷的冰袋,密封。并应按照 NY/T 541 执行。

8.1.2.2 储存温度

样品应尽可能在 24 h 内将样品送至实验室。样品若不能在 24 h 内送达,样品需在 2℃~8℃ 冷藏保存,且保存时间不得超过 4 d。样品若需更长时间的保存,则应将样品置于-20℃。对于 已经冻存样品,在运输过程中推荐使用干冰,但应特别注意避免反复冻融。牛现场速检测样本无需储存转运,但在室温条件下(10° \sim 30°C)样本放置时间不超过 5 h;2° \sim 8°C条件下不超过 12 h。并应按照 NY/T 541 执行。

8.2 检测方法

使用全自动生化分析仪和血气分析仪,也可使用商品化的现场快速检测仪或检测试纸进行测定。

8.3 临床型乳热检测指标

病牛全血/血清总钙浓度低于1.40 mmol/L或离子钙浓度低于0.80 mmol/L。

8.4 亚临床型乳热检测指标

病牛全血/血清总钙浓度降低至 $1.40~\text{mmol/L}\sim2.10~\text{mmol/L}$ 之间或离子钙浓度降至 $0.80~\text{mmol/L}\sim1.05~\text{mmol/L}$ 之间。

8.5 判断标准

符合7.1和8.3中描述的条件,该牛即可被确诊为临床型乳热;符合7.2和8.4中描述的条件,该牛即可被确诊为亚临床型乳热。

9 治疗

9.1 治疗原则

遵循"分类施策、精准补钙、综合护理"原则。针对尚能站立的病牛采用口服补钙,常用葡萄糖酸钙等。卧地(瘫痪)病牛立即采用钙制剂静脉注射,如葡萄糖酸钙、硼葡萄糖酸钙、 氯化钙。

9.1.1 可站立的病牛治疗原则

进行口服补钙治疗,应按照 NY/T 3467 的规定执行。病牛口服补钙时,应保证充足饮水,若投喂 6 h~12 h 后未好转可再次投喂或换措施,且避免与高磷饲料同喂。

9.1.2 卧地 (瘫痪) 的病牛治疗原则

9.1.2.1 应立即采取钙制剂静脉注射治疗。

- 9.1.2.2 结合病情给予维生素 D_3 及其衍生物(如骨化三醇)。对有神经症状的病牛,可注射 硫酸镁等辅助性药物。
- 9.1.2.3 采用静脉补钙的方式进行治疗,需将药液温热至 35°C~38°C; 操作过程中要严格遵循无菌原则,防止注射部位感染,同时避免药液外渗。
- 9.1.2.4 应根据病牛体重和病情精准控制钙剂用量,防止过量使用,每头牛最大剂量不超过 180 g。
- 9.1.2.5 静脉注射时同步监测病牛心率(>100次/min)时减缓速度。
- 9.1.2.6 加强卧地病牛护理。
- 9.2 治疗药品

9.2.1 钙制剂及维生素

葡萄糖酸、钙乳酸钙、钙棒、硼葡萄糖酸钙、氯化钙、维生素 D3 及其衍生物等。

9.2.2 中药方剂

当归、黄芪、党参、熟地、续断、桑寄生、白芍、川芎、威灵仙、杜仲、茯苓、防风、益智仁、青皮、补骨脂、甘草。

9.3 可站立病牛治疗

9.3.1 治疗方法

使投喂器投服钙棒 1 枚 \sim 2 枚。或使用投药器投服乳酸钙片,10 g/次 \sim 25 g/次,2 次/d \sim 3 次/d。或 10%葡萄糖酸钙口服溶液灌服,200 mL/次 \sim 300 mL/次,2 次/d \sim 3 次/d。

9.3.2 治疗效果综合判定

观察病牛临床症状是否缓解或消失;实验室检测病牛全血/血清总钙恢复2.10 mmol/L及 离子钙1.05 mmol/L以上。

9.4 卧地 (瘫痪) 病牛治疗

9.4.1 葡萄糖酸钙疗法

25%葡萄糖酸钙需缓慢静脉滴注。推荐剂量为按体重计算离子钙含量 0.15 g/kg, 滴注速度控制在离子钙不超过 0.5 g/min ~ 1 g/min。

9.4.2 硼葡萄糖酸钙疗法

20%硼葡萄糖酸钙需缓慢静脉滴注。推荐剂量为按体重计算离子钙 0.15 g/kg, 滴注速度控制在离子钙不超过 1 g/min。

9.4.3 氯化钙疗法

5%氯化钙需缓慢静脉滴注。推荐剂量为按体重计算离子钙 0.075 g/kg; 滴注速度控制在离子钙不超过 1 g/min。

9.4.4 钙制剂联合维生素 D₃疗法

在静脉补钙后,可注射维生素 D_3 10 mL~15 mL(1次/3 d)。或者骨化三醇(1,25-二羟维生素 D_3),剂量为0.5 μ g/d~1 μ g/d。

9.5 中药治疗

9.5.1 治疗原则

气血双补,活血化瘀,祛风除湿。

9.5.2 方剂

当归、黄芪、党参、熟地、续断、桑寄生、白芍各 30 g; 川芎、威灵仙、杜仲、茯苓、防风各 25 g; 益智仁、青皮、补骨脂、甘草各 20 g。共研为末,开水冲调,候温灌服。

9.5.3 治疗剂量

1 剂/d, 连用 3 d~5 d。

9.6 治疗效果综合判定

- 9.6.1 临床观察病牛是否能在治疗后1 h~2 h内尝试站立(如抬头、前肢支撑),以及3 h内完全站立。病牛临床症状是否有所缓解。
- 9. 6. 2 实验室检测病牛全血/血清总钙恢复至2.10 mmol/L以上,同时离子钙浓度1.05 mmol/L以上。

10 群体风险监测

10.1 样品采集、保存与运输

10.1.1 采样时间、数量及人员原则

10.1.1.1 采样时间

- a 饲料采样应安排在奶牛预产前1周~2周内。
- b 全血/血清采样应安排在分娩后 12 h 内进行。
- c 尿液采样应安排在预产期前 48 h 内进行。

10.1.1.2 采样数量

- a 当牛群总头数≤30, 随机选择3头奶牛进行监测。
- b 当牛群总头数> 30 且≤ 100,按牛群总头数 10%随机抽检,若 10%计算结果小于 5 头,则最少抽取 5 头。
- c 当牛群总头数>100头,在每个阶段(产前、产后等)随机选取 12头奶牛监测,同时考虑到头胎群体与经产群体(特别是 3 胎次及以上),对经产群体中 3 胎次及以上奶牛按该群体数量 5%~10%的比例进行额外抽检。

10.1.1.3 采样人员要求

采样人员应具备相应的专业知识和操作技能,并定期接受相关培训,以确保采样过程的 标准化和规范化。

10.1.2 采样方法

10.1.3 饲料采集方法

饲料采样方法应按照 GB/T 14699的规定进行。

10.1.4 血样采集方法

在清晨、未采食和未挤奶的状态下,从尾静脉无菌采集奶牛的血液,每头约 10 mL,编号 并填写相应采样单。血清析出后,分离血清。牛现场快速检测产品采用全血。

10.1.5 尿样采集方法

在清晨、未采食和未挤奶的状态下,采集尿液样品 50 mL,放入无菌试管中,编号并填写相应采样单。

10.1.6 样品保存与运输

10.1.6.1 密封

同8.1.2.1。

10.1.6.2 储存温度

同8.1.2.2。

10.2 样品检测

10.2.1 饲料常量元素监测

10. 2. 1. 1 预产期前 1 周 \sim 2 周对奶牛日粮干物质(DM)中的钙、镁、钾含量进行检测,应按照 GB/T 13885 的规定进行。

10. 2. 1. 2 预产期前 1 周 \sim 2 周对奶牛日粮 DM 中的磷含量的检测,应按照 GB/T 6437 的规定进行。

10.2.2 血样检测

使用全自动生化分析仪,于预产期前对奶牛血清中的镁(或离子镁)浓度进行测定;于 奶牛分娩后,检测其血清中的钙(或离子钙)和磷浓度。也可选用商品化的现场快速检测仪 器设备及配套试剂耗材进行检测。

10.2.3 尿样检测

使用pH检测仪或pH试纸测定尿样pH。也可采用商品化的现场快速检测试纸或芯片及仪器设备。

10.3 体况评分(BCS)

通过眼观和触诊方法对预产期前 1 周 \sim 2 周奶牛 BCS 评分,应按照 NY/T 3191 的规定进行。

10.4 群体风险监测指标

10.4.1 品种

娟姗牛患乳热的风险显著高于荷斯坦牛(风险比约 2.5:1)。

10.4.2 年龄

5岁及以上的奶牛发病风险较高。

10.4.3 胎次

3胎~6胎奶牛的发病率较高,1胎~2胎牛相对较少。

10.4.4 产奶量

高产奶牛更易发生乳热。

10.4.5 营养

高钾日粮以及低粗纤维日粮均增加乳热的风险。

10.4.6 病史

具有乳热病史的奶牛再次发病的概率较高。

10.4.7 发病时间

绝大多数病例发生在产后 3 d 内,少数病例发生在泌乳各个阶段,以高产高胎次牛较为多见。

10.4.8 日粮中钙

围产前期日粮中钙应不大于全混合日粮(TMR) DM含量的1.2%。

10.4.9 日粮中磷

围产前期日粮中磷应不大于TMR DM含量的0.3%。

10.4.10 日粮中镁

围产前期日粮中镁应不小于TMR DM含量的0.4%。

10.4.11 日粮中钾

围产前期日粮中钾应不大于TMR DM含量的1.3%。

10. 4. 12 BCS

预产期前1周~2周或临产母牛体况分应为3.25分~3.50分。

10.4.13 尿样 pH

对于饲喂阴离子盐日粮的奶牛,预产期前48 h尿样pH应为5.8~6.8。

10. 4. 14 分娩后 24 h 内血清中钙

分娩后24 h之内全血/血清总钙应不小于2.10 mmol/L且全血/血清中离子钙不小于1.05 mmol/L。

10.4.15 分娩后 12 h~48 h 血清中镁

分娩后12 h~48 h血清中镁应在0.60 mmol/L~1.20 mmol/L之间或全血/血清中离子镁应在 0.52 mmol/L~0.65 mmol/L之间。

10.4.16 分娩后 12 h~48 h 血清中磷

分娩后 12 h~48 h 血清中磷应在 0.80 mmol/L~1.60 mmol/L 之间。

10.5 群体发病风险综合判定

符合10.4中描述的任何1项,被判断为该牛群产后有乳热的风险。

10.6 监测频度

每个月对围产期奶牛群进行1次监测。

11 群体预防

11.1 奶牛产后补钙原则

11.1.1 根据品种补钙

荷斯坦头胎牛原则上不需产后补钙,但若为高产(预计产奶量>35 kg/d)或 BCS≥3.5 分,产后需口服补钙 1 次;经产牛产后应立即补钙 2 次,每次间隔 12 h。娟姗牛无论是头胎牛还是经产牛,产后均需补钙 2 次,每次间隔 12 h,且每天补钙总量 50 g~125 g (**见附录 A 和 B**)。

11.1.2 根据胎次补钙

对于分娩后第3胎或以上的奶牛,需给予额外钙补充。

11.1.3 补钙总量

每日通过口服预防性补钙摄入的离子钙总量应控制在50g~125g范围内。

11.1.4 奶牛补钙方式选择

根据牧场实际情况,选择下列方式之一进行补钙即可。

11.1.5 奶牛分娩后监测

在分娩后的几天内,观察奶牛是否出现乳热症状。所有治疗情况都应详细记录在兽医室的日记簿中或录入系统。

11.2 口服补钙

11.2.1 灌注给药

使用灌注系统将钙制剂(如葡萄糖酸钙、丙酸钙)与温水(35°C~38°C)混合均匀制成的灌注剂给予奶牛。

11.2.2 投服钙丸

- 11. 2. 2. 1 荷斯坦头胎牛仅在预计产奶量 > 35 kg/d 或 BCS \geq 3.5 分时,于分娩后 12 h 内给予 1 次钙丸。
- 11. 2. 2. 2 荷斯坦经产牛(≥2 胎)和娟姗牛(不分胎次),均于分娩后立即(0 h~6 h 内)给予第 1 次钙丸,间隔 12 h(即分娩后约 12 h)给予第 2 次钙丸。
- 11.2.2.3 所有品种第3胎或以上的奶牛再过12h(即分娩后24h),再给予钙丸。
- *注意: 选择灌注剂或钙丸其中一种方式即可。

11.3 肌肉注射维生素 D₃

在奶牛分娩后 1 d~2 d,每次肌肉注射 20 万 IU,根据需要可重复注射。

11.4 静脉补钙

在分娩后 1 d~2 d,选择颈静脉上 1/3 和中 1/3 交界处,用 16 号或 18 号针头斜刺入静脉缓慢滴注,按体重以 0.1 g/kg~0.2 g/kg 离子钙的剂量,可选择氯化钙、葡萄糖酸钙或硼葡萄糖酸钙进行注射,1次/d~2次/d。

*注意:静脉注射期间密切观察奶牛反应,若出现疼痛、呼吸急促(成年牛呼吸频率: 12次/min~16次/min)、心率加快(成年奶牛正常心率: 60次/min~80次/min)等异常立即停止。

11.5 围产期阴离子盐日粮

11.5.1 饲喂阴离子日粮

- 11.5.1.1 将阴离子盐与围产期精饲料、草料按一定比例预混并混合均匀,再添加到 TMR 车进行二次搅拌以确保混合均匀,应按照 NY/T 3049 的规定进行。
- 11.5.1.2 荷斯坦头胎牛若 BCS≥3.5 分或预计产奶量> 35 kg/d, 需在产前 21 d 至产犊使用阴离子盐日粮; 荷斯坦经产牛(≥2 胎), 娟姗牛头胎牛和经产牛均在产前 21d 至产犊使用该日粮, 应按照 NY/T 14 的规定进行。
- 11.5.1.3 产前 25 d 转入围产圈舍开始饲喂,饲喂不少于 15 d。

11.5.2 判断标准

- 11. 5. 2. 1 日粮阴阳离子差降至-5mEq/100g DM~-15mEq/100g DM(**见附录C**)。
- 11. 5. 2. 2 尿液监测pH 5.8~pH6.8之间,以确保尿液的酸化效果。若pH>7.0,说明阴离子盐喂量不够,需增加;若pH<5.5,则说明阴离子盐喂量过量,需减少。
- 11.5.2.3 调整后饲喂3 d再进行检测。

11.6 日粮中添加硅酸铝盐

11.6.1 饲喂添加方法

- 11.6.1.1 在奶牛产前 21 d~28 d, 硅铝酸盐添加剂量控制在饲料总量的按 DM 计 1%~2%。
- 11.6.1.2 泌乳期相应增加但不超过3%.
- 11.6.1.3 干奶期添加量为 0.5%~1%。

11.7 预防效果综合判定

- 11.7.1 实验室检测显示全血/血清总钙浓度2.10 mmol/L以上,同时血钙离子浓度1.05 mmol/L以上。
- 11.7.2 临床观察可见奶牛采食正常、反刍正常、体温和心率正常等,无精神沉郁或肌肉震颤。

附录A

(资料性)

A.1 丙酸钙总量计算

- A. 1. 1 目标:根据每日需补充的元素钙总量(50 g~125 g),计算不同钙源的实际使用量。
- A. 1. 2 公式: 钙源使用量(g)=目标元素钙量(g)/钙源含钙量(g/100 g)×100。
- A. 1. 3 示例: 若选择丙酸钙, 分子量与钙含量计算如下。
- A. 1. 4 分子式: C₆ H_{1 0} CaO₄。
- A. 1. 5 原子组成与原子量
- A. 1. 5. 1 钙 (Ca): 40 g/mol
- A. 1. 5. 2 丙酸根 (C₂H₅COO⁻):
- A. 1. 5. 3 碳 (C) $\times 3$: $12 \times 3 = 36$ g/mol
- A. 1. 5. 4 氢 (H) $\times 5$: $1 \times 5 = 5$ g/mol
- A. 1. 5. 5 氧 (O) $\times 2$: $16 \times 2 = 32$ g/mol
- A. 1. 5. 6 1个丙酸根: 36+5+32=73 g/mol; 2个丙酸根: 73×2=146 g/mol
- A. 1. 5. 7 总分子量: 40 (Ca) + 146 (丙酸根) = 186 g/mol

A. 1. 6 元素钙含量

钙含量百分比=40/186×100%≈21.5%。

A.1.7 每日投服丙酸钙含量

含钙 21.5 g/100 g, 按每日需补钙100 g, 则丙酸钙=100/21.5×100=465 g, 即每日需投喂465g 丙酸钙。

附录B

(资料性)

B.1 葡萄糖酸钙总量计算

- B. 1. 1 目标:根据每日需补充的元素钙总量(50 g~125 g),计算不同钙源的实际使用量。
- B. 1. 2 公式: 钙源使用量(g)=目标元素钙量(g)/钙源含钙量(g/100 g)×100。
- B. 1. 3 示例: 若选择葡萄糖酸钙, 分子量与钙含量计算如下。
- B. 1. 4 分子式: C_{1 2} H_{2 2} CaO_{1 4}。
- B. 1. 5 原子组成与原子量
- B. 1. 5. 1 钙 (Ca): 40 g/mol
- B. 1. 5. 2 葡萄糖酸根 (C₆ H_{1 1} O₇):
- B. 1. 5. 3 碳 (C) $\times 6$: $12 \times 6 = 72$ g/mol
- B. 1. 5. 4 氢 (H) $\times 11$: $1 \times 11 = 11$ g/mol
- B. 1. 5. 5 氧 (O) \times 7: $16 \times 7 = 112$ g/mol
- B. 1. 5. 6 1个葡萄糖酸根: 72 + 11 + 112 = 195 g/mol; 2个葡萄糖酸根: 195 × 2 = 390 g/mol
- B. 1. 5. 7 总分子量: 40(Ca) + 390(两个葡萄糖酸根) = 430 g/mol

B. 1. 5. 8 元素钙含量

钙含量百分比=40/430×100%≈9.30%。

B. 1. 5. 9 每日投服葡萄糖酸钙含量

含钙9.3 g/100 g,按每日需补钙100 g,则葡萄糖酸为100/9.3×100=1075 g,即每日需投喂1075 g 葡萄糖酸钙。

附录C

(资料性)

C. 1 日粮阴阳离子差(DCAD)降至-5mEq/100g DM~-15mEq/100g DM的计算

基于日粮干物质中主要阳离子(Na^+ 、 K^+)与主要阴离子(Cl^- 、 S^{2^-})的毫克当量(mEq)差值。

C. 1. 2 计算原理

DCAD 的公式为: DCAD (mEq/100g DM) = (Na⁺ + K⁺) - (Cl⁻ + S²⁻)。其中,各离子的毫克 当量需通过其含量(%)与转化系数计算得出。

C.1.3 计算步骤

C.1.3.1 确定日粮中各离子的含量(%)

通过饲料成分分析,获取日粮干物质中Na⁺、K⁺、Cl⁻、S²⁻的百分比含量。

C. 1. 3. 2 计算各离子的毫克当量(mEq)

使用以下转化系数将离子含量(%)转换为毫克当量(mEq/100g DM)。

C. 1. 3. 2. 1 Na^+

 Na^+ 系数= $1/0.023 \approx 43.48$; Na^+ (mEq/100g DM) = Na^+ 含量% × 43.48。

C. 1. 3. 2. 2 K+

 K^+ 系数= $1/0.039 \approx 25.64$; K^+ (mEq/100g DM) = K^+ 含量% $\times 25.64$ 。

C. 1. 3. 2. 3 CI-

 Cl^- 系数 = $1/0.0355 \approx 28.17$; Cl^- (mEq/100g DM) = Cl^- 含量% × 28.17。

$C. 1. 3. 2. 4 S^2$

 S^{2-} 系数 = 1/0.016 \approx 62.5; S^{2-} (mEq/100g DM) = S^{2-} 含量% \times 62.5。

C. 1. 3. 3 计算DCAD值

 $DCAD = (Na^{+} + K^{+}) - (Cl^{-} + S^{2-})$